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Abstract. Employing the self-consistent Green’s function approach, we studied the temperature depen-
dence of the spin-wave stiffness in diluted magnetic semiconductors. Note that the Green’s function ap-
proach includes the spatial and temperature fluctuations simultaneously which was not possible within
conventional Weiss mean-field theory. It is rather interesting that we found the stiffness becomes dramati-
cally softened as the critical temperature is approached, which seems to explain the mysterious sharp drop
of magnetization curves in samples within diffusive regime.

PACS. 75.30.Ds Spin waves – 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin
diffusion, dynamic scaling, etc.) – 75.50.Dd Nonmetallic ferromagnetic materials

1 introduction

Spintronics [1] brings out an industrial renaissance in
the past decades for its powerful usage of the extra spin
degrees of freedom in many electronic applications. For
instances, giant magneto-resistance (GMR) had been ap-
plied to read-write head of computer hard disk and tunnel-
ing magneto-resistance (TMR) to the newest nonvolatile
memory for MRAM. The huge success kicked off the in-
tense investigations on possible realizations of similar de-
vices in semiconducting materials, which can be directly
integrated with the existing industrial techniques. The
idea has enjoyed its primary success in the so-called di-
luted magnetic semiconductors (DMS), where the mag-
netic ions are doped into the host semiconductors and lead
to a ferromagnetic phase.

The key issue at current stage is how to raise the criti-
cal temperature so that the ferromagnetic order is robust
even at room temperature. Taking the well-known ma-
terial (Ga, Mn)As as example [2–4], it was demonstrated
that the critical temperature can be raised significantly by
thermal annealing. However, the highest critical temper-
ature at the time of writing is around 160 K [5], which is
still far from the goal for room-temperature DMS. Based
on Zener model, Dietl et al. proposed to look for room-
temperature DMS in wide bandgap semiconductors and
oxides such as GaN, ZnO, TiO2 [6–8]. While the critical
temperatures in these materials are typically higher com-
pared with (Ga, Mn)As, clustering seems to be a serious
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problem which prevents their potential usage in realistic
devices.

While the issue of raising up the critical temperature
seems to lie in experimentalists’ hands, we believe a better
understanding of the ferromagnetic phase would also help.
After intense theoretical investigations, the origin of ferro-
magnetism in DMS is believed to be carrier mediated [9].
Typically, the doped transition metal ions provide the lo-
calized impurity spins with small direct exchange (often
antiferromagnetic) among themselves. Furthermore, the
experimental results show that only 10 ∼ 30% of the
doped magnetic ions contribute itinerant carriers [10] into
the host semiconducting bands. Through double-exchange
mechanism, the itinerant carriers mediated the indirect
exchange interactions between the localized impurity spins
and the ferromagnetic order sets in when the system is
cooled below the critical temperature.

While the origin of the ferromagnetic phase is more or
less clear, some of its physical properties remain puzzling.
To achieve a full understanding, it is crucial to include the
exchange coupling between itinerant and localized spin
densities, thermal fluctuations, the random locations of
the doped ions, the realistic band structure and the re-
pulsive interaction between itinerant carriers. Since it is
almost impossible to incorporate all effects in single for-
malism, one needs to glue up piecewise information from
different approaches.

In this paper we employ the self-consistent Green’s
function method [11], which includes the spatial and ther-
mal fluctuations simultaneously, to study the temperature
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dependence of spin-wave stiffness in DMS. Since our goal
is to demonstrate the peculiar temperature dependence,
we simplify the realistic band structure by the single-band
approximation, at price of sacrificing the quantitative de-
scription for realistic materials. However, within single-
band approximation, we were able to establish the close
tie between the softening of stiffness and the sudden drop
in magnetization curves [2]. Moreover, our self-consistent
Green’s function approach also shows the appearance of
concave magnetization curve [12] in the regime where itin-
erant carriers are dilute. This implies a smooth crossover
from the diffusive regime to the localized regime with
strong disorder. Since previous studies including the full
six bands only renormalize various physical parameters
and twist the phase boundaries [13], we expect our results
to be qualitatively robust.

The organization of the paper is the following: in the
Section 2 of this paper, we derive the formalism for the
self-consistent Green’s function approach. In Section 3,
we show our numerical results and discuss connections to
other approaches in the literature.

2 Theory

The sd model is proper to describe the DMS systems in-
cluding a strong exchange interaction between local spins,
which come from electrons in d orbits of transition atom,
and itinerant spins around whole system, which come
from impurity doping donation. The Hamiltonian of the
sd model can be expressed by

H = H0 + J

∫
d3rS(r) · σ(r), (1)

the first term H0 is the kinetic energy of the itinerant
carriers and the second term is the exchange interaction
between itinerant carrier spins and the localized spin mo-
ments, where the spin density of the localized moments is
S(r) =

∑
I δ

3(r −RI)SI and the itinerant spin density is
σ(r) = ψ†(r)(τ/2)ψ(r). In momentum representation the
Hamiltonian is expressed as
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where the constant c is the density of the magnetic ions
in DMS and J is the magnetic coupling integral in the
unit of eV nm3. Since the RKKY interaction dominates
the magnetism in DMS, to investigate the magnon dis-
persion is necessary for studying in microscopic. In order
to obtain the magnon dispersion of local spin in DMS we
have to calculate the retarded local spin Green’s function
defined by

Gi,j(t) = 〈〈S+
i (t);S−

j (0)y〉〉
= −iθ(t)〈[S+

i (t), S−
j (0)]〉, (3)

where θ(t) is a step function of time t, 〈· · · 〉 represent-
ing the expectation value and [· · · ] is the commutator.
It is more convenient to derive this Green’s function in
momentum space. Through the Fourier transformation to
obtain the spin Green’s function in momentum represen-
tation, we get

G(q, t) = 〈〈S+
q (t);S−(0, 0)〉〉. (4)

Employing the equation of motion to equation (4) makes
the spin Green’s function calculation reduced to

i
d
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G(q, t) = ϕ+ 〈〈[S+

q (t), H ];S−(0, 0)〉〉, (5)

where function ϕ comes from the derivative of time for
step function. Following commutation rules in RPA (ran-
dom phase approximation) are we used in this paper, there
are
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where 〈Sz〉 is the expectation value of magnetization for
local spin. Employing these commutation rules to equa-
tion (5) results to the equation

ωG(q, ω) = ϕ− cJ〈Sz〉〈〈σ+
q ;S−(0, 0)〉〉

+cJ〈σz〉〈〈S+
q ;S−(0, 0)〉〉, (10)

where 〈σz〉 is the expectation value of the magnetization
for itinerant carriers. We found the derivation process
for local spin Green’s function resulting to another new
Green’s function ζ(k, ω) = 〈〈σ+

k ;S−(0, 0)〉〉 in the mean-
while. It is clearly the new resulted Green’s function re-
veals the physics that the exchange interaction between
local spins needs the itinerant carriers’ mediation. There-
fore we need to calculate the new Green’s function by the
same way,
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d
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where εk is the electrons kinetic energy with momentum k.
Apply the Fourier transformation and RPA for carriers
density to the new Green’s function ζ resulting to

ωζ(q, ω) =
∑

p

(εp − εp+q)〈〈c†p+q,↑cp,↓;S−(0, 0)〉〉

−cJ
2

∑
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×G(q, ω) + cJ〈Sz〉ζ(q, ω). (14)

Abstracting momentum p from ζ(q, ω) in equation (14)
results to a relation
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2
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Combining equations (10) and (14) results to a closed form
of Green’s function equation G(q, ω),
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where the 〈c†p,σcp,σ〉 = fp,σ = (βεp,σ + 1)−1 is the car-
rier density for spin σ and β = 1/KBT . The poles in
equation (16) represent magnon excitations. In the diluted
limitation, the minority is the itinerant carriers which
could be seen as a free carrier gas with effective mass
m∗ = 0.5me [9], where me is the free electron mass, and in
the ferromagnetic state the majority of local magnetic ions
produce an effective magnetic field causing both spins to
split with Zeeman energy cJ〈Sz〉. The kinetic energies of
different spins are εk,σ = �

2k2/2m∗ ∓ σ1/2cJ〈Sz〉 respec-
tively. Therefore the magnon excitation energy for each
momentum q is
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Finally, we could utilize the Callen’s arbitrary spin for-
mula,

〈Sz〉 =

[S − Φ(S)][1 + Φ(S)]2S+1 + [S + 1 + Φ(S)][Φ(S)]2S+1

[1 + Φ(S)]2S+1 − [Φ(S)]2S+1

(18)

to obtain the magnetization values, where Φ(S) =
1
N

∑
q(exp(βωq) − 1)−1 is the magnon number.

Fig. 1. We take the exchange coupling and the effective mass
are fixed at typical values J = 0.15 eV nm3, m∗ = 0.5me

and the ratio of itinerant and localized spin densities fixed at
c∗/c = 0.1 to calculation resulting to TC = 45 K. In the insert
of the figure shows a sharp drop of magnetization in the vicinity
of TC . In the sharp drop region the magnon shows a softening
effect.

3 Results and discussions

The anomalous temperature dependence of magnetization
of sharp drop in the vicinity of TC represents in our the-
oretical result as shown in the insert of Figure 1. is con-
sistent with experimental result implying an important
interaction existing in the magnetization collapse region.
According to the RKKY mechanism the magnetism is es-
tablished by itinerant carriers mediation. The sharp drop
of magnetization reveals a possibility of carrier-magnon
decoupling in the vicinity of TC . This decoupling effect
reduces the effective magnetic interaction and the magne-
tization disappears in decoupling completely.

The dispersion of spin wave derived from the conven-
tional spin wave theories [14] is temperature independent,
which is an intrinsic characteristic for many kinds of mag-
nets. The Figure 1 exhibits the dispersion of magnon from
our theoretical calculation showing a temperature inde-
pendent dispersion at far from TCs, which reveals a result
hat the temperature independence of normal spin wave
existing at robust magnetism region, meanwhile it reveals
an obvious magnon softening effect in the vicinity of TC

leading to the magnetization falling down sharply. Inter-
estingly, this softening effect starts from small magnon
momentum qs then extending to whole dispersion region
eventually. From the conventional spin wave theory as the
q �, the magnon dispersion relation has ω(q) = Dq2,
where the stiffness constant D ∝ J

′
and J

′
is the mag-

netic coupling integral between two separated spins. From
the linear response theory we have derived [15] before, the
coupling J

′
is ∝J2, where the J is the coupling between

itinerant spins and local spins. Therefore this softening ef-
fect results to D decreasing, which reveals a fact that the
effective coupling J reduces and gives an implication with
carrier-magnon decouple in system.
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In the conclusion, by our theoretical study the anoma-
lous magnetization sharp drop in the vicinity of TC comes
from the magnon softening effect, and this softening effect
possibly comes from the carrier-magnon decoupling.

We thank the support of National Center of Theoretical Sci-
ence of Taiwan.
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